A Semi-Explicit Multi-Step Method for Solving Incompressible Navier-Stokes Equations
نویسندگان
چکیده
The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and finite volume methods, the fractional step method had been successfully applied to obtain predictor-corrector semi-explicit methods. In the present work, we derive a scheme based on using the fractional step technique in conjunction with explicit multi-step time integration within the framework of Galerkin-type stabilized finite element methods. We show that under certain assumptions, a Runge–Kutta scheme equipped with the fractional step leads to an efficient semi-explicit method, where the pressure Poisson equation is solved only once per time step. Thus, the computational cost of the implicit step of the scheme is minimized. The numerical example solved validates the resulting scheme and provides the insights regarding its accuracy and computational efficiency.
منابع مشابه
An Enhanced Flux Treatment in Solving Incompressible Flow in a Forward-Facing Step
The aim of this paper is to give a detailed effect of several parameters such as step height, Reynolds number, contraction ratio, and temperature difference between the entrance and solid boundaries, of a forward-facing step. An accurate length of separation and reattachment zones are achieved. A finite-volume method (FVM) has been developed to study incompressible flow in a forward-facing step...
متن کاملSolving the Incompressibility Enforcement Symmetric Indefinite System resulting from the Navier-Stokes Equations
Solving the incompressible Navier-Stokes equations for fluid flow using a semi-lagrangian method is a two step process [3]. In this paper we focus on the second step which involves the solution of a large sparse symmetric indefinite linear system of equations. Numerous numerical methods were used to solve this system. Here, the computation requirements of several are compared in hopes of findin...
متن کاملLocal discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow
The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equa...
متن کاملTime Step Restrictions Using Semi-implicit Methods for the Incompressible Navier-stokes Equations
The incompressible Navier-Stokes equations are discretized in space and integrated in time by the method of lines and a semi-implicit method. In each time step a set of systems of linear equations has to be solved. The size of the time steps are restricted by stability and accuracy of the time-stepping scheme, and convergence of the iterative methods for the solution of the systems of equations...
متن کاملA fourth-order approximate projection method for the incompressible Navier-Stokes equations on locally-refined periodic domains
In this follow-up of our previous work [Zhang et. al., A fourth-order accurate finitevolume method with structured adaptive mesh refinement for solving the advectiondiffusion equation, SIAM J. Sci. Comput. 34 (2012) B179-B201], the author proposes a high-order semi-implicit method for numerically solving the incompressible NavierStokes equations on locally-refined periodic domains. Fourth-order...
متن کامل